

2^{ème} année Master

Spécialité: Géotechnique

Année universitaire : 2018/2019

Module: Traitement des sols

TD N° 04

Exercice 01:

Le **Tableau 1** représente les formules chimiques de différentes familles d'argiles les plus fréquentes dans la nature.

Tableau 1 : Formules chimiques de différentes familles d'argiles les plus fréquentes dans la nature.

Type d'argile	Formule chimique	Type d'argile	Formule chimique
Chlorite	(Fe,Mg,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	Odinite	(Fe,Mg, Al,Fe,Ti,Mn) _{2.5} (Si,Al) ₂ O ₅ (OH) ₄
Endellite	$Al_2Si_2O_5(OH)_4 \cdot 2(H_2O)$	Montmorillonite	(Al _{3.4} ,Mg _{0.6})Si ₈ O ₂₀ (OH) ₄ · nH ₂ O
Halloysite	$Al_2Si_2O_5(OH)_4$	Bentonite	$(Na,Ca)_{0.33}(Al,Mg)_2Si_4O_{10}(OH)_2(H_2O)_n$
Kaolinite	$Al_2Si_2O_5(OH)_4$	Vermiculite	$(Mg,Ca)_{0,7}(Mg,Fe,Al)_6(Al,Si)_8O_{22}(OH)_4 \cdot 8H_2O$
Nacrite	$Al_2Si_2O_5(OH)_4$	Illite	(K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]
Talc	$Mg_3Si_4O_{10}(OH)_2$	Biotite	$K(Mg,Fe)_3(OH,F)_2(Si_3AIO_{10})$

Le travail demandé :

- 1- Déterminer le bilan de charges des composés chimiques pour chacun de ces types d'argiles tout en se basant sur le tableau périodique des éléments chimiques (**Figure 1**)?
- 2- Calculer la charge permanente (CP) du réseau cristallographique de ces argiles?
- 3- Que signifie-t-elle la charge nulle (CP=0)?
- 4- Proposer des cations (monovalents K⁺, N⁺,... ou divalents Ca²⁺, Mg²⁺,...) de compensation pour la neutralisation de la charge du réseau cristallographique des argiles présentant des charges différentes de zéro?

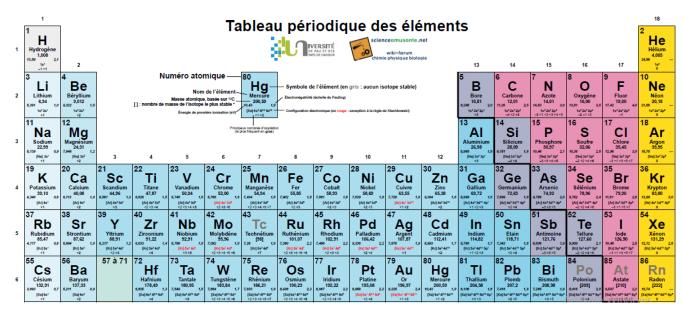


Figure 1: Tableau périodique des éléments (ici en donnant seulement la partie dont on a besoin).

Exercice 02:

Nous voulons étudier l'influence apportée par l'utilisation des additifs minéraux (8% de chaux (C), 20% de pouzzolane naturelle (PN) et leur combinaison 8%C+20%PN) sur plusieurs propriétés géotechniques (cisaillement, gonflement, compressibilité, compression simple et perméabilité) de deux types de sols en vue de leur utilisation comme matériaux de construction dans l'autoroute Est-Ouest, section Khemis Miliana-Chlef, Algérie (**Tableau 1**). A cet effet, toutes les éprouvettes de sols reconstituées doivent être préparées à la densité sèche maximale (γ_{dmax}) et à la teneur en eau optimale (γ_{dmax}). En effet, les références de compactage (γ_{dmax} , γ_{dmax}) des sols naturels traités et non traités ont été déterminées au laboratoire à l'aide de l'essai « Proctor normal (PN) » (**Tableau 2**).

Tableau 1 : Dimensions géométriques des moules à utiliser pour les essais géotechniques visés.

N°	Type d'essai à réaliser	Dimensions géo moules	Forme du moule		
		Diamètre (cm)	Hauteur (cm)	moule	
(1)	Cisaillement à la boite de Casagrande	6.0	4.0		
(2)	Compressibilité / Gonflement	7.0	1.5	Cylindrique	
(3)	Compression simple / triaxial	3.8	7.6		
(4)	Perméabilité	10	20		

Tableau 2 : Références de compactage des deux sols argileux avant et après traitement.

	Références de compactage							
Nature du sol	Sans traitement		8% de chaux		20% de PN		8%C+20%PN	
Nature du soi	γ _{dmax} (kN/m ³)	W _{OPN} (%)	γ _{dmax} (kN/m ³)	W _{OPN} (%)	γ _{dmax} (kN/m ³)	W _{OPN} (%)	γ _{dmax} (kN/m ³)	W _{OPN} (%)
Argile rouge non plastique	16.91	15.30	16.20	17.39	17.10	13.80	16.00	18.20
Argile grise très plastique	13.82	28.29	12.90	31.10	14.30	25.80	13.61	28.20

Le travail demandé :

- 1- Calculer les volumes géométriques (en m³) des moules (1), (2), (3) et (4) qui correspondent aux essais géotechniques optés?
- 2- Calculer les masses (en gramme, g) de l'eau (m_w) et des grains solides (m_s) des deux argiles traitées et non traitées pour chacun essai géotechnique (1), (2), (3) et (4)?
- 3- En vérifiant les calculs précédents?
- 4- Déduire les masses (en gramme, g) des additifs à utiliser pour chaque essai géotechnique et pour chaque type de traitement?

Chargé de TD : Dr. H. GADOURI